丽水纳米晶铁芯发展现状

时间:2020年12月04日 来源:

    一、立体卷铁芯发展1、国内外立体卷铁芯发展历程20世纪90年代,我国部分厂家已在研发生产立体结构的变压器,2002年起已有产品进行销售,但一直未能大规模推广应用,主要是市场关注度不够,使企业研发投入少,生产设备落后,产品单一且容量小、应用领域窄。因此,立体卷铁芯技术发展不够成熟。2、立体卷铁芯节能技术研发历程节能节材高效立体卷铁芯变压器是在平面卷铁芯变压器结构基础上进行特殊设计发展起来的。将平面形卷铁芯的内外框改成窗口尺寸与内框相同的三只相同单框,三框拼合在一起,就成为对称的立体三角形卷铁芯结构,实现三相磁路完全对称等长。二、立体卷铁芯技术特点铁芯的磁导体是能量转化的媒体,立体卷铁芯是一种突破传统平面结构的变压器铁芯,是三个由若干根梯形料带依次连续卷绕而成的铁芯单框拼合而成,呈三相对称立体式结构。与传统变压器铁芯相比,具有三相平衡、省材、空载损耗低、空载电流低、抗短路能力强、噪声低、电场磁场低等特点[1]。1、三相平衡由于叠铁芯及平面卷铁芯变压器的三个芯柱呈平面排列,造成中间芯柱的磁路长度短,两个边柱的磁路较长,二边柱平均磁路长度比中柱平均磁路长20%以上,从而造成中柱损耗低,两个边柱损耗较大。非晶化基础上获得的铁基纳米晶软磁合金, 由于其双相组织结构特点,因而具有优异的软磁 特性。丽水纳米晶铁芯发展现状

    进而能够令装设有该纳米晶磁芯成品的共模电感在高频环境中具有更好的滤波作用,也能够有效降低其损耗。具体实施方式为了更好的理解本发明,下面将结合一些实施例进一步阐述本发明的内容。各个不同实施例之间可以进行相互组合,以构成未在以下描述中示出的其他实施例。实施例一本实施例中,实验人员采用热处理方法加工处理纳米晶磁芯的具体步骤如下:步骤一、将待处理的纳米晶磁芯放置在真空炉内并抽真空;步骤二、温度由室温升温至480℃,并保温60min;步骤三、温度由480℃升温至550℃,并保温80min;步骤四、将真空炉的炉体温度降至350℃,待炉体温度降至350℃之后取出纳米晶磁芯半成品;步骤五、将步骤四中取出的纳米晶磁芯半成品放置在横磁炉内;步骤六、温度由室温升温至400℃,并保温120min,同时在保温过程中进行加横磁处理,其中,横磁炉处施加的磁场强度为1300gs;步骤七、将横磁炉的炉温降至350℃,待横磁炉的炉温降至350℃之后,取出纳米晶磁芯成品。可以理解的,上述第一阶段的过程可描述为:首先,实验人员将待处理的纳米晶磁芯放置在真空炉内,之后对该真空炉进行抽真空处理,以保护真空炉内的纳米晶磁芯,防止其被氧化;然后。嘉兴纳米晶铁芯技术指导纳米晶导磁片就好比是打开这把锁的钥匙,一把钥匙配一把锁,纳米晶可实现匹配。

    层叠体包含层叠体中的被多个磁体插入孔和中心孔包围的部分,作为呈岛状的副部,层叠体包含层叠体中的被各磁体插入孔和层叠体的外周面包围的部分,各副部利用连接部相对于主部一体地连结,变形部设置于冲裁部件中的与主部对应的区域,第二变形部设置于冲裁部件中的与副部对应的区域。在这种情况下,实现与例4同样的作用效果。附图标记说明1-转子层叠铁芯(层叠体);1a-中心孔;1b-主部;1c-副部;1d-连接部(桥);1e-第二连接部(桥);10-磁体插入孔;13-变形部部分;13a-变形部(第二变形部);14-变形部部分;14a-变形部(变形部);100-制造装置;es-电磁钢板(金属板);p1-冲头(第三冲头);p2-冲头(第二冲头);p3-冲头(第四冲头);p3a-多个按压突起(第二按压突起);p3b-按压突起(按压突起);w-冲裁部件。

    步骤四、将真空炉的炉体温度降至330℃,待炉体温度降至330℃之后取出纳米晶磁芯半成品;步骤五、将步骤四中取出的纳米晶磁芯半成品放置在横磁炉内;步骤六、温度由室温升温至400℃,并保温120min,同时在保温过程中进行加横磁处理,其中,横磁炉处施加的磁场强度为1400gs;步骤七、将横磁炉的炉温降至330℃,待横磁炉的炉温降至300℃之后,取出纳米晶磁芯成品。以规格为30*20*10的纳米晶磁芯成品为例,常规磁芯与本实施例中纳米晶磁芯成品的性能对比如下:可以理解的,在高频环境下,相比于常规磁芯,本实施例中纳米晶磁芯成品的导磁率及q值更优异,进而该纳米晶磁芯成品应用于高频环境时拥有更好的滤波作用及更低的损耗。上述各实施例中所提供的共模电感纳米晶磁芯的热处理方法,是通过在真空炉内对待处理的纳米晶磁芯进行热处理获得纳米晶磁芯半成品,继而将纳米晶磁芯半成品放置在横磁炉中进行升温、保温、施加横向磁场及降温等操作以获得纳米晶磁芯成品,制备的纳米晶磁芯成品在不同高频环境下的导磁率均高于常规磁芯的导磁率,以及纳米晶磁芯成品的q值均不低于,进而能够令装设有该纳米晶磁芯成品的共模电感具有更好的滤波作用,也能够有效降低其损耗。具有特定成分的非晶态带材放进热处理炉里通过定向控制生成100纳米以内的晶粒,形成的.非晶和纳米晶的混合。

    所述延长螺栓顶部固定延伸有螺纹头。进一步的,所述延长螺栓外壁设置有与螺栓固定帽相匹配的花纹。进一步的,所述铁芯本体对称开设有四个固定孔。进一步的,所述铁芯齿远离铁芯本体的一端固定设置有防脱头。与现有技术相比,本实用新型的有益效果是:本实用新型在铁芯本体长度较短,不方便电机安装,将螺纹头安装入螺纹孔内部,使延长螺栓与固定螺栓固定连接,通过延长螺栓与固定孔相互连接,通过延长螺栓底部开设的螺纹孔可以继续拼接延长螺栓,对延长螺栓继续延长,通过螺栓固定帽可以在合适的时候对铁芯本体进行固定,使铁芯长度可以通过人为的调节来进行控制。附图说明图1为本实用新型整体结构俯视图;图2为本实用新型整体结构示意图;图3为本实用新型固定螺栓与延长螺栓安装示意图;图4为本实用新型延长结构示意图。图中:100-铁芯本体;101-铁芯齿;102-钳线槽;103-固定孔;104-固定螺栓;105-螺栓顶帽;106-螺栓固定帽;107-扇形冲片;108-绝缘隔层;109-螺纹孔;110-延长螺栓;111-螺纹头。具体实施方式下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例**是本实用新型一部分实施例。饱和磁通密度:铁基纳米晶除了比铁基非晶略低一点外,明显优于钴基非晶和铁氧体。东莞纳米晶铁芯**知识

纳米晶制造的变压器应用在逆变电源上,对电源可靠性提高起了很大作用。丽水纳米晶铁芯发展现状

    一边用冲头对该金属板实施冲裁加工、切口弯曲加工等而获得冲裁部件;以及第二工序,即对得到的冲裁部件进行层叠并在变形部部分相互进行紧固。具体而言,工序包括:在金属板上分别形成与中心孔对应的贯穿孔、与磁体插入孔对应的贯穿孔、变形部部分的步骤;之后利用与冲裁部件的外形对应的形状的冲头对金属板进行冲裁的步骤。但是,当利用冲头从金属板冲裁形成冲裁部件时,会由于与中心孔对应的贯穿孔存在于冲裁部件的中心部,从而使得冲裁部件朝向该贯穿孔发生些许变形。即,会在冲裁部件的外周缘作用朝向径向内侧的载荷。尤其在专利文献1记载的转子层叠铁芯中,如上所述,将转子层叠铁芯的主部与副部一体地连结的桥较细。因此,冲裁部件中的与桥对应的部分容易发生变形。因此会导致副部相对地发生位移,从而导致在高度方向上相邻的冲裁部件之间变形部部分彼此的紧固力降低,或者变形部彼此根本就没有适当地紧固,而在冲裁部件中的与副部对应的部分发生翘起(日文:めくれ)。其结果为,在高度方向上相邻的冲裁部件之间的间隙的均匀性降低,有可能对转子层叠铁芯的平面度、平行度以及垂直度产生影响,或者使得转子层叠铁芯的密度不均匀。因此转子层叠铁芯的精度有可能降低。丽水纳米晶铁芯发展现状

江苏鑫铂源科技有限公司致力于电子元器件,是一家生产型的公司。公司业务分为纳米晶共模电感磁芯,纳米晶高频率变压器铁芯,高频功率变压器成品绕制,纳米晶共模电感成品绕制等,目前不断进行创新和服务改进,为客户提供良好的产品和服务。公司将不断增强企业重点竞争力,努力学习行业知识,遵守行业规范,植根于电子元器件行业的发展。江苏鑫铂源科技立足于全国市场,依托强大的研发实力,融合前沿的技术理念,飞快响应客户的变化需求。

信息来源于互联网 本站不为信息真实性负责