嘉兴纳米晶铁芯共同合作

时间:2021年01月07日 来源:

    而对于纳米线与薄膜之间通过人为“自上而下”的方法进行原位、灵活可操控、高精度、低温的键合技术尚没有发现相关报道。技术实现要素:针对上述问题,本发明提出一种非晶纳米线与多孔薄膜的原位可操控键合方法。实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:一种非晶纳米线与多孔薄膜的原位可操控键合方法,将纳米线分散到具有多孔薄膜结构的透射电镜(tem)样品上,之后放入tem中,选取自由端突出到多孔薄膜孔洞中的纳米线片段,在tem的原位观察下按如下方法进行键合处理:(1)纳米线削尖:选择合适束斑尺寸和电流密度的聚焦电子束,对纳米线自由端中心轴位置进行辐照,对其进行切割削尖;(2)纳米线弯钩:将聚焦电子束束斑扩大,从偏离中心轴一侧对纳米线进行辐照,纳米线前列朝另一侧发生弯钩变形,直至纳米线前列接触到多孔薄膜待键合位置;(3)纳米线键合:当纳米线前列接触到多孔薄膜待键合位置时,立即将电子束束斑的尺寸进一步扩大,同时移动束斑位置,使弯曲的纳米线片段及待键合多孔薄膜均处在电子束辐照范围之内,将纳米线键合到多孔薄膜上。作为本发明的进一步改进,所述的多孔薄膜的孔径大小超过250nm。作为本发明的进一步改进。纳米晶铁芯工作磁感高,功率密度大,可达到15Kw/kg。减小了铁芯的体积。嘉兴纳米晶铁芯共同合作

    具体实施方式下面参照附图对本公开的实施方式的一例更详细地进行说明。在以下的说明中,对于相同要素或者具有相同功能的要素使用相同的附图标记,并省略重复的说明。[转子层叠铁芯的结构]首先,参照图1~图4对转子层叠铁芯1的结构进行说明。转子层叠铁芯1是转子(rotor)的一部分。转子是通过向转子层叠铁芯1安装端面板和主轴(均未图示)而构成的。通过转子与定子(stator)组合而构成电动机(马达)。如图1所示,转子层叠铁芯1呈圆筒形状。即,在转子层叠铁芯1的中央部分设置有沿着中心轴ax贯穿转子层叠铁芯1并延伸的中心孔1a(贯穿孔)。在中心孔1a内能够配置主轴。在转子层叠铁芯1的中心孔1a的周围,设置有沿着中心轴ax贯穿转子层叠铁芯1并延伸的多个磁体插入孔10(贯穿孔)。在本实施方式中,在转子层叠铁芯1设置有四个磁体插入孔10。具体而言,在本实施方式中,磁体插入孔10具有:部分10a、第二部分10b、以及第三部分10c。部分10a在中心孔1a附近延伸。第二部分10b从部分10a的一端连续地朝向转子层叠铁芯1的外周面,并沿着转子层叠铁芯1的径向延伸。第三部分10c从部分10a的另一端连续地朝向转子层叠铁芯1的外周面,并沿着转子层叠铁芯1的径向延伸。因此,在本实施方式中。肇庆纳米晶铁芯经验丰富产品广泛应用于新能源、家电、信息及通信、仪器仪表、航天航空、军工、电力等领域。

    而构成沿着高度方向贯穿层叠体并延伸且位于层叠体的中心部的中心孔的步骤。在高度方向上相邻的冲裁部件中的对应的变形部彼此结合,并且对应的第二变形部彼此结合。在冲裁部件中,第二变形部位于比变形部靠近外周缘侧。第二变形部彼此的紧固力比变形部彼此的紧固力小。例5的方法实现与例1同样的作用效果。例6.在例5的方法中,还可以成为,形成变形部的步骤包括利用第二冲头在金属板上形成m(m是1以上的自然数)个变形部的步骤,形成第二变形部的步骤包括利用第三冲头在金属板上形成n(n是比m大的自然数)个第二变形部的步骤,在冲裁部件上设置有m(m是1以上的自然数)个变形部,并设置有n(n是比m大的自然数)个第二变形部。在这种情况下,实现与例2同样的作用效果。例7.在例5或者例6的方法中,还可以成为,第二变形部的突出量比变形部彼此的突出量小。例8.在例5~例7的任一方法中,还可以成为,在第四冲头上,在与变形部对应的位置设置有按压突起,并且在与第二变形部对应的位置设置有第二按压突起,形成多个冲裁部件的步骤包括,当利用第四冲头冲裁金属板而形成冲裁部件时,用对应的按压突起按压变形部的凹部,并且用对应的第二按压突起按压第二变形部的凹部。在这种情况下。

    能够利用变形部13a形成与在变形部14a的周围产生的间隙相同程度的间隙。因此,进一步提高了冲裁部件w彼此的间隙的均匀性。其结果为,能够提高转子层叠铁芯1的精度。在一个冲裁部件w设置有多个变形部13a的情况下,可以将几个变形部13a以彼此相邻而形成一个组的方式配置。同样地,在一个冲裁部件w设置有多个变形部14a的情况下,可以将几个变形部14a以保持相邻而形成一个组的方式配置。虽然在上述的实施方式中构成为,变形部13a的凸部的突出量比变形部14a的凸部的突出量小,但只要是变形部13a彼此的紧固力比变形部14a彼此的紧固力小,则变形部13a、14a的方式不限于此。例如,只要俯视来看变形部13a的尺寸比变形部14a的尺寸小,则变形部13a彼此的紧固力比变形部14a彼此的紧固力小。或者,如果变形部13a的间隙(用于形成变形部的冲头的外周面与冲模的内周面的差)的大小比变形部14a的间隙的尺寸小,则变形部13a彼此的紧固力比变形部14a彼此的紧固力小。此外,变形部13a彼此及变形部14a彼此的紧固力例如可以通过如下方式求出,即:在变形部13a、14a的周围将转子层叠铁芯1切断之后使冲裁部件w彼此剥离并测量此时所需的力的大小。虽然在上述的实施方式中。米晶软磁材料的基础研究和应用研究宿点是纳米晶合金材料研制开发成电力、电子和信息的各式各样的磁性器件.

    能够更牢固地结合变形部彼此及第二变形部彼此。例9.在例8的方法中,还可以成为,形成多个冲裁部件的步骤包括:当利用第四冲头冲裁金属板而形成冲裁部件时,用对应的按压突起按压变形部的凹部的侧壁面和底壁面中的一方,并且用对应的第二按压突起按压第二变形部的凹部的侧壁面和底壁面中的一方。但是,当按压突起的形状与变形部的凹部的形状大致一致时,需要使按压突起相对于对应的变形部高精度地定位。同样地,当第二按压突起的形状与第二变形部的凹部的形状大致一致时,需要使第二按压突起相对于对应的第二变形部高精度地定位。但是,根据例9的方法,由于及第二按压突起分别按压对应的及第二变形部的凹部的一部分壁面,因此不需要一定高精度地进行及第二按压突起的定位。因此,能够更低成本且有效地制造层叠铁芯。例10.在例5~例9的任意一种方法中,还可以为,包括:在形成多个冲裁部件的步骤之前,利用第五冲头在金属板上形成多个第二贯穿孔的步骤,构成层叠体的步骤包括:以在高度方向上相邻的冲裁部件彼此之间多个第二贯穿孔彼此重叠的方式层叠多个冲裁部件,而构成沿着高度方向贯穿层叠体并延伸且在中心孔的周围排列的多个磁体插入孔的步骤,作为主部。非晶合金铁芯材料对机械应力十分敏锐,不管是张万有引力仍然屈曲应力都会影响其磁力能。肇庆纳米晶铁芯经验丰富

纳米晶可调抗饱和磁场可达30~350A/m,使得无线充电的应用范围更宽。嘉兴纳米晶铁芯共同合作

    一、立体卷铁芯发展1、国内外立体卷铁芯发展历程20世纪90年代,我国部分厂家已在研发生产立体结构的变压器,2002年起已有产品进行销售,但一直未能大规模推广应用,主要是市场关注度不够,使企业研发投入少,生产设备落后,产品单一且容量小、应用领域窄。因此,立体卷铁芯技术发展不够成熟。2、立体卷铁芯节能技术研发历程节能节材高效立体卷铁芯变压器是在平面卷铁芯变压器结构基础上进行特殊设计发展起来的。将平面形卷铁芯的内外框改成窗口尺寸与内框相同的三只相同单框,三框拼合在一起,就成为对称的立体三角形卷铁芯结构,实现三相磁路完全对称等长。二、立体卷铁芯技术特点铁芯的磁导体是能量转化的媒体,立体卷铁芯是一种突破传统平面结构的变压器铁芯,是三个由若干根梯形料带依次连续卷绕而成的铁芯单框拼合而成,呈三相对称立体式结构。与传统变压器铁芯相比,具有三相平衡、省材、空载损耗低、空载电流低、抗短路能力强、噪声低、电场磁场低等特点[1]。1、三相平衡由于叠铁芯及平面卷铁芯变压器的三个芯柱呈平面排列,造成中间芯柱的磁路长度短,两个边柱的磁路较长,二边柱平均磁路长度比中柱平均磁路长20%以上,从而造成中柱损耗低,两个边柱损耗较大。嘉兴纳米晶铁芯共同合作

江苏鑫铂源科技有限公司位于东台市安丰镇红安村财富大道5号。公司自成立以来,以质量为发展,让匠心弥散在每个细节,公司旗下纳米晶共模电感磁芯,纳米晶高频率变压器铁芯,高频功率变压器成品绕制,纳米晶共模电感成品绕制深受客户的喜爱。公司秉持诚信为本的经营理念,在电子元器件深耕多年,以技术为先导,以自主产品为重点,发挥人才优势,打造电子元器件良好品牌。江苏鑫铂源科技秉承“客户为尊、服务为荣、创意为先、技术为实”的经营理念,全力打造公司的重点竞争力。

信息来源于互联网 本站不为信息真实性负责